Equivalence of viscosity and weak solutions for the normalized p(x)-Laplacian

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS FOR THE p(x)-LAPLACIAN

We consider different notions of solutions to the p(x)-Laplace equation − div(|Du(x)| Du(x)) = 0 with 1 < p(x) < ∞. We show by proving a comparison principle that viscosity supersolutions and p(x)-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are u...

متن کامل

On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-Linear Equation

We discuss and compare various notions of weak solution for the p-Laplace equation −div(|∇u|p−2∇u) = 0 and its parabolic counterpart ut − div(|∇u|p−2∇u) = 0. In addition to the usual Sobolev weak solutions based on integration by parts, we consider the p-superharmonic (or p-superparabolic) functions from nonlinear potential theory and the viscosity solutions based on generalized pointwise deriv...

متن کامل

Weak Dynamic Programming Principle for Viscosity Solutions

We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-maid for the derivation of the dynamic programming equation in the sense of viscosity solutions.

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

Weak and Viscosity Solutions of the Fractional Laplace Equation

Aim of this paper is to show that weak solutions of the following fractional Laplacian equation { (−∆)su = f in Ω u = g in Rn \ Ω are also continuous solutions (up to the boundary) of this problem in the viscosity sense. Here s ∈ (0, 1) is a fixed parameter, Ω is a bounded, open subset of Rn (n > 1) with C2-boundary, and (−∆)s is the fractional Laplacian operator, that may be defined as (−∆)u(x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2018

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-018-1375-1